Produkt zum Begriff Hypotenuse:
-
Aristo Geometriedreieck AR1648/2 Hypotenuse 325mm glasklar
mit farbig hinterlegten Winkelgraden Ausführung des Tuschenoppens: unterseitig mit Griff Werkstoff: Plexiglas® Farbe: glasklar Mit Facette. Erfüllt alle Anforderungen der ÖNORM A2134. Geprägte Teilungsstriche. Unterseitige Tuschennoppen.
Preis: 18.64 € | Versand*: 0.00 € -
ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm
Perfekt für den Unterricht an der Tafel: das große Geometrie-Dreieck TZ-DREIECK Das ARISTO Wandtafel-Zeichengerät TZ-DREIECK misst auch in großen Dimensionen sehr präzise. Maßstab, Winkelmesser, Symmetrie-Maßstab und Parallel-Lineal - und das alles vereint dieses Zeichengerät in sich. Zum Verwechseln ähnlich Das transparente Geometrie-Dreieck sieht aus wie das ARISTO TZ-Dreieck der Schüler, nur in Groß. Dadurch ist ein vorteilhaftes Lehren garantiert ist. Gekennzeichnet ist es durch das 10 mm Gitternetz, Millimeter-Teilungen senkrecht zur Hypotenuse, markierte Winkel in 7° und 42° für perspektivisches Zeichnen, 75° für Schrägbeschriftung und 45° Linien für leichteres Schraffieren. Liegt sehr gut in der Hand Grundkörper und Haltegriff sind aus hochwertigem, transparent Plexiglas gefertigt, weshalb die Handhabung extrem einfach und stabil ist. Die transparenten Gumminoppen sorgen dafür, dass das ARISTO TZ-DREIECK beim Zeichnen nicht verrutscht. Die im Siebdruck aufgebrachte gelbe Teilung bietet einen bestmöglichen Kontrast zur dunklen Tafeloberfläche und sorgt so für eine gute Lesbarkeit auch bei größerer Distanz. Bestellen Sie das ARISTO TZ-DREIECK. Es ist ideal für den Unterricht an der Tafel und erleichtert Ihnen den Schulalltag.
Preis: 51.80 € | Versand*: 4.99 € -
DONAU Geometrie-Dreieck 16,0 cm
Hier geht nichts schief Mit dem Geometrie-Dreieck 16,0 cm von DONAU haben Sie den rechten Winkel immer im Blick. Zeichnen Sie kinderleicht akkurate Linien und messen Sie den Winkel auf den Grad genau. Mit dem DONAU Geometrie-Dreieck kein Problem. Es liegt gut in der Hand und erleichtert Ihnen das Zeichnen ungemein. Alles im Blick Die gegenläufigen Grad-Zahlen werden auf dem Geometrie-Dreieck mittels farblicher Hinterlegung optisch hervorgehoben. Die Skalierungen und Zahlen sind gut lesbar und sorgen für perfekte Linien und Winkel. Bestellen Sie das Geometrie-Dreieck 16,0 cm von DONAU noch heute in unserem Online-Shop und überzeugen Sie sich von der einfachen Handhabung.
Preis: 6.35 € | Versand*: 4.99 € -
WESTCOTT Geometrie-Dreieck 16,0 cm
Immer im richtigen Winkel – mit dem WESTCOTT Geodreieck Mit diesem Geodreieck messen Sie Winkel auf den Grad genau und zeichnen stets akkurate Linien. Besonders hilfreich: Die Winkelgrade sind farbig hinterlegt. Für die einfache Handhabung ist das Geometrie-Dreieck mit einem abnehmbaren Griff versehen. Hervorragende Produkteigenschaften Damit Sie Ihr Zeichenwerkzeug lange Zeit verwenden können, besteht es aus widerstandsfähigem, bruchfestem Kunststoff . Statten Sie sich für häufiges Messen und Zeichnen mit einem hochwertigen Geodreieck von WESTCOTT aus und bestellen Sie dieses bequem und einfach hier im Online-Shop!
Preis: 1.14 € | Versand*: 4.99 €
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Welche Bedeutung hat die Hypotenuse in der Geometrie?
Die Länge der Hypotenuse in einem rechtwinkligen Dreieck kann mit dem Satz des Pythagoras berechnet werden: a^2 + b^2 = c^2. Die Hypotenuse ist die längste Seite eines rechtwinkligen Dreiecks und liegt gegenüber dem rechten Winkel. In der Geometrie ist die Hypotenuse daher eine wichtige Seite, um die Beziehungen zwischen den Seitenlängen eines Dreiecks zu bestimmen.
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Und welche Bedeutung hat die Hypotenuse in der Geometrie?
Die Länge der Hypotenuse in einem rechtwinkligen Dreieck kann mit dem Satz des Pythagoras berechnet werden: a² + b² = c², wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Die Hypotenuse ist die längste Seite eines rechtwinkligen Dreiecks und gegenüber dem rechten Winkel gelegen. In der Geometrie spielt die Hypotenuse eine wichtige Rolle bei der Berechnung von Winkeln und Seitenlängen in rechtwinkligen Dreiecken.
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Was ist die Bedeutung der Hypotenuse in der Geometrie?
Die Länge der Hypotenuse kann mit dem Satz des Pythagoras berechnet werden: a^2 + b^2 = c^2, wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Die Hypotenuse ist die längste Seite eines rechtwinkligen Dreiecks und liegt gegenüber dem rechten Winkel. In der Geometrie ist die Hypotenuse daher eine wichtige Größe zur Bestimmung von Abständen und Winkeln in Dreiecken.
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Warum ist die Hypotenuse die längste Seite im Dreieck?
Die Länge der Hypotenuse kann mit dem Satz des Pythagoras berechnet werden: c = √(a² + b²), wobei a und b die Längen der Katheten sind. Die Hypotenuse ist die längste Seite, da sie gegenüber dem rechten Winkel liegt und somit die größte Distanz zwischen den beiden anderen Seiten hat. Dies ergibt sich aus der Eigenschaft des rechtwinkligen Dreiecks, dass die Summe der Quadrate der Katheten gleich dem Quadrat der Hypotenuse ist.
Ähnliche Suchbegriffe für Hypotenuse:
-
WESTCOTT Geometrie-Dreieck 14,0 cm
Super praktisch: das Geometrie-Dreieck mit Abheftlochung Das Geometrie-Dreieck von WESTCOTT mit integrierter Abheftlochung ist immer dabei und kann nicht verloren gehen. Es kann in jedem Ordner abgeheftet werden. Für Beruf und Studium bestens geeignet Das Geodreieck ist eine Kombination aus Lineal und Winkelmesser in Form eines rechtwinkligen, gleichschenkligen Dreiecks. Es eignet sich ideal als Hilfsmittel für den Zeichen- und Mathematikunterricht. Speziell im Bereich Geometrie benötigen Sie es zum Messen und Zeichnen von Winkeln und paralleler Geraden. Die Details machen den Unterschied Das transparent/gelbe WESTCOTT Geometrie-Dreieck misst an der längsten Seite (Hypotenuse) 14,0. Es ist farbig hinterlegt und besitzt eine gegenläufige Gradskala mit Tuschenoppen. Dies sind erhabene Punkte an der Unterseite, die verhindern, dass beim Zeichnen mit Tinte oder Tusche etwas verschmiert. Das 2,0 mm starke Dreieck ist aus Kunststoff. Bestellen Sie jetzt das Geometrie-Dreieck von WESTCOTT mit der praktischen Abheftlochung bequem in unserem Online-Shop!
Preis: 1.05 € | Versand*: 4.99 € -
herlitz Geometrie-Dreieck 16,0 cm
Das Geometrie-Dreieck überzeugt auf ganzer Linie Ob Winkel messen oder akkurate Linien zeichnen – das Geometrie-Dreieck der Marke herlitz unterstützt Sie tatkräftig bei Ihren anfallenden, maßgenauen Zeichnungen. Dabei verfügt die transparent/gelbe Oberfläche über alles, was Sie für Ihre Zeichnungen benötigen. So werden Sie bei der Nutzung nichts vermissen und restlos begeistert sein. Immer im richtigen Winkel Dank der grün hinterlegten Gradskala ist ein exaktes Ablesen der Winkel kein Problem. Das Geometrie-Dreieck verfügt zudem über nützliche Tuschennoppen, die ein verwischen der Linien verhindern und Ihnen die Linealführung erleichtern. Für Messungen dient außerdem das 10-mm-Raster. Die gegenläufige Grad-Skala dieses Zeichengeräts ist für ein besseres Ablesen farbig markiert. Und damit Sie Ihr Zeichenwerkzeug auch lange Zeit nutzen können, besteht das Geometrie-Dreieck aus widerstandsfähigem Kunststoff. Mit diesem Geometrie-Dreieck gelingt Ihnen jede Abbildung. Zögern Sie deshalb nicht und bestellen Sie das Geometrie-Dreieck der Marke herlitz gleich hier im Online-Shop!
Preis: 1.25 € | Versand*: 4.99 € -
ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm
Perfekt für den Unterricht an der Tafel: das große Geometrie-Dreieck TZ-DREIECK Das ARISTO Wandtafel-Zeichengerät TZ-DREIECK misst auch in großen Dimensionen sehr präzise. Maßstab, Winkelmesser, Symmetrie-Maßstab und Parallel-Lineal - und das alles vereint dieses Zeichengerät in sich. Zum Verwechseln ähnlich Das transparente Geometrie-Dreieck sieht aus wie das ARISTO TZ-Dreieck der Schüler, nur in Groß. Dadurch ist ein vorteilhaftes Lehren garantiert ist. Gekennzeichnet ist es durch das 10 mm Gitternetz, Millimeter-Teilungen senkrecht zur Hypotenuse, markierte Winkel in 7° und 42° für perspektivisches Zeichnen, 75° für Schrägbeschriftung und 45° Linien für leichteres Schraffieren. Liegt sehr gut in der Hand Grundkörper und Haltegriff sind aus hochwertigem, transparent Plexiglas gefertigt, weshalb die Handhabung extrem einfach und stabil ist. Die transparenten Gumminoppen sorgen dafür, dass das ARISTO TZ-DREIECK beim Zeichnen nicht verrutscht. Die im Siebdruck aufgebrachte gelbe Teilung bietet einen bestmöglichen Kontrast zur dunklen Tafeloberfläche und sorgt so für eine gute Lesbarkeit auch bei größerer Distanz. Bestellen Sie das ARISTO TZ-DREIECK. Es ist ideal für den Unterricht an der Tafel und erleichtert Ihnen den Schulalltag.
Preis: 52.63 € | Versand*: 5.94 € -
ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm
Perfekt für den Unterricht an der Tafel: das große Geometrie-Dreieck TZ-DREIECK Das ARISTO Wandtafel-Zeichengerät TZ-DREIECK misst auch in großen Dimensionen sehr präzise. Maßstab, Winkelmesser, Symmetrie-Maßstab und Parallel-Lineal - und das alles vereint dieses Zeichengerät in sich. Zum Verwechseln ähnlich Das transparente Geometrie-Dreieck sieht aus wie das ARISTO TZ-Dreieck der Schüler, nur in Groß. Dadurch ist ein vorteilhaftes Lehren garantiert ist. Gekennzeichnet ist es durch das 10 mm Gitternetz, Millimeter-Teilungen senkrecht zur Hypotenuse, markierte Winkel in 7° und 42° für perspektivisches Zeichnen, 75° für Schrägbeschriftung und 45° Linien für leichteres Schraffieren. Liegt sehr gut in der Hand Grundkörper und Haltegriff sind aus hochwertigem, transparent Plexiglas gefertigt, weshalb die Handhabung extrem einfach und stabil ist. Die transparenten Gumminoppen sorgen dafür, dass das ARISTO TZ-DREIECK beim Zeichnen nicht verrutscht. Die im Siebdruck aufgebrachte gelbe Teilung bietet einen bestmöglichen Kontrast zur dunklen Tafeloberfläche und sorgt so für eine gute Lesbarkeit auch bei größerer Distanz. Bestellen Sie das ARISTO TZ-DREIECK. Es ist ideal für den Unterricht an der Tafel und erleichtert Ihnen den Schulalltag.
Preis: 52.65 € | Versand*: 5.94 €
-
Ist die Grundlinie in einem Dreieck die Hypotenuse?
Nein, die Grundlinie ist nicht die Hypotenuse in einem Dreieck. Die Hypotenuse ist die Seite, die dem rechten Winkel gegenüberliegt, während die Grundlinie die Seite ist, auf der das Dreieck steht.
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Warum ist die Hypotenuse die längste Seite in einem rechtwinkligen Dreieck?
Die Länge der Hypotenuse in einem rechtwinkligen Dreieck kann mit dem Satz des Pythagoras berechnet werden: a^2 + b^2 = c^2, wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Die Hypotenuse ist die längste Seite, da sie direkt gegenüber dem rechten Winkel liegt und somit die größte Distanz zwischen den beiden anderen Seiten hat. Dies ergibt sich aus der Definition des rechtwinkligen Dreiecks und der Eigenschaften von rechtwinkligen Dreiecken.
-
Wie berechnet man die Länge der Hypotenuse in einem rechtwinkligen Dreieck? Warum ist die Hypotenuse die längste Seite in einem rechtwinkligen Dreieck?
Die Länge der Hypotenuse kann mit dem Satz des Pythagoras berechnet werden: a² + b² = c², wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Die Hypotenuse ist die längste Seite, da sie die direkte Verbindung zwischen den beiden anderen Seiten bildet und somit die längste Strecke darstellt. Dies ergibt sich aus der Eigenschaft des rechtwinkligen Dreiecks, dass die Hypotenuse immer länger ist als jede der beiden Katheten.
-
Wie berechnet man die hypotenuse bei einem rechtwinkligen Dreieck?
Um die Hypotenuse bei einem rechtwinkligen Dreieck zu berechnen, kann man den Satz des Pythagoras verwenden. Dieser besagt, dass die Summe der Quadrate der beiden Katheten gleich dem Quadrat der Hypotenuse ist. Man kann also die Formel a^2 + b^2 = c^2 anwenden, wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Durch Umstellen der Formel kann man dann die Länge der Hypotenuse berechnen. Es ist wichtig, die richtigen Seiten des Dreiecks zu identifizieren, um die Formel korrekt anwenden zu können.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.